In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygenation in a murine model.
نویسندگان
چکیده
Nitroxides are redox-sensitive probes, which are useful in noninvasively delineating tissue heterogeneity especially with respect to metabolic activity and tissue oxygenation. Recent studies have shown that nitroxides are in vitro and in vivo radioprotectors and selectively protect normal tissue compared to tumor tissue. It has been postulated that the basis for selective radioprotection of normal tissues is greater bioreduction of nitroxides in tumor tissue compared to normal tissue. The aim of the present study was to investigate the distribution and lifetime of nitroxides in tumor and normal tissues. Mice were implanted with tumor cells (RIF-1) in the thigh, and the tumor was allowed to grow to about 10-15 mm in diameter. After i.v. infusion of nitroxides, in vivo electron paramagnetic resonance spectroscopy and imaging of the tumor were performed using a specially built bridged-loop surface resonator. The pharmacokinetic and spatial distribution of the nitroxides in tumor tissue were followed and compared with those in normal tissue. Three-dimensional spatial images showed significant heterogeneity in the nitroxide distribution as well as reduction rates. The nitroxide reduction rates were significantly higher in tumors than in the normal tissue. Measurements using spin label oximetry showed a substantial difference in the level of oxygenation between normal tissue (muscle) and tumor tissue. Average pO2 levels in tumor tissue were found to be 3-fold lower than in a corresponding volume of normal tissue. The lower pO2 levels in tumor compared to normal tissue may explain the more rapid reduction of nitroxides in these tissues. This study demonstrates that electron paramagnetic resonance imaging can perform noninvasive anatomical as well as functional imaging and provide in vivo physiological information regarding cellular metabolism in tumor and normal tissues.
منابع مشابه
In vivo measurement of regional oxygenation and imaging of redox status in RIF-1 murine tumor: effect of carbogen-breathing.
The purpose of this study was to noninvasively monitor tumor oxygenation and redox status during hyperoxygenation treatment, such as carbogen-breathing, in a murine tumor model using in vivo electron paramagnetic resonance (EPR) spectroscopy and imaging techniques. The study was performed using implanted lithium phthalocyanine (LiPc) microcrystals as the oximetry probe and 3-carbamoylproxyl (3-...
متن کاملAssessment of tumor oxygenation by electron paramagnetic resonance: principles and applications.
This review paper attempts to provide an overview of the principles and techniques that are often termed electron paramagnetic resonance (EPR) oximetry. The paper discusses the potential of such methods and illustrates they have been successfully applied to measure oxygen tension, an essential parameter of the tumor microenvironment. To help the reader understand the motivation for carrying out...
متن کاملGlucocorticoids modulate tumor radiation response through a decrease in tumor oxygen consumption.
PURPOSE We hypothesized that glucocorticoids may enhance tumor radiosensitivity by increasing tumor oxygenation (pO(2)) through inhibition of mitochondrial respiration. EXPERIMENTAL DESIGN The effect of three glucocorticoids (hydrocortisone, dexamethasone, and prednisolone) on pO(2) was studied in murine TLT liver tumors and FSaII fibrosarcomas. At the time of maximum pO(2) (t(max), 30 min af...
متن کاملHeterogeneity of regional redox status and relation of the redox status to oxygenation in a tumor model, evaluated using electron paramagnetic resonance imaging.
It is widely accepted that redox status, along with the partial pressure of oxygen (pO(2)), determines the efficacy of some therapeutic methods applied to treat tumors, including radiation. Redox status, evaluated by the reduction of a nitroxyl probe, was reportedly heterogeneous in a mouse tumor model. However, neither variation of heterogeneity of the redox status among mice nor the relation ...
متن کاملLow-field paramagnetic resonance imaging of tumor oxygenation and glycolytic activity in mice.
A priori knowledge of spatial and temporal changes in partial pressure of oxygen (oxygenation; pO(2)) in solid tumors, a key prognostic factor in cancer treatment outcome, could greatly improve treatment planning in radiotherapy and chemotherapy. Pulsed electron paramagnetic resonance imaging (EPRI) provides quantitative 3D maps of tissue pO(2) in living objects. In this study, we implemented a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 58 7 شماره
صفحات -
تاریخ انتشار 1998